Analysis of Artificial Intelligence-Based Photogrammetry for Calculating the Volume of Bulk Material Stockpiles
DOI:
https://doi.org/10.57152/malcom.v5i4.2323Keywords:
Artificial Intelligence, Bulk Material Stockpiles, Point Cloud, UAV Photogrammetry, Volume EstimationAbstract
This paper presents an automated UAV-based photogrammetric workflow for efficiently and accurately estimating bulk material stockpile volumes, addressing the limitations of conventional manual and LiDAR-based methods. The proposed approach converts UAV video data captured with a 40 MP RGB drone into georeferenced still frames, followed by SIFT and ORB feature extraction and exhaustive matching within COLMAP database. Incremental Structure-from-Motion with bundle adjustment reconstructs a sparse point cloud of 119,424 points and optimized camera parameters, while PatchMatch-based Multi-View Stereo generates a dense cloud of 2.3 million points at a ground sampling distance (GSD) of 0.1 cm. Ground Control Points obtained with RTK-GNSS ensure sub-2 cm georeferencing accuracy. Stockpile volumes are estimated using angle-of-repose height calculations, truncated-pyramid contour integration, and voxel occupancy methods, achieving volume errors of less than 3%. Validation against GPS and terrestrial laser scanning (TLS) references indicates horizontal accuracy of CE90 = 0.208 m, vertical accuracy of LE90 = 0.056 m, and mean reprojection error of 0.19 pixels. The entire process requires only 24 minutes for 199 images, confirming its applicability for industrial monitoring. Overall, the proposed AI-assisted photogrammetric pipeline provides a robust, reproducible, and cost-effective solution for automated stockpile volume measurement, enhancing safety, accuracy, and material management efficiency.
Downloads
References
A. Alsayed and M. R. A. Nabawy, “Stockpile Volume Estimation in Open and Confined Environments: A Review,” Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/drones7080537.
M. Koirala, P. G. Ellingsen, and A. Z. Woldaregay, “Validation of Dry Bulk Pile Volume Estimation Algorithm based on Angle of Repose using Experimental Images,” Sep. 2025, [Online]. Available: http://arxiv.org/abs/2509.13890
Z. Wang and M. Menenti, “Challenges and Opportunities in Lidar Remote Sensing,” Frontiers in Remote Sensing, vol. 2, 2021, doi: 10.3389/frsen.2021.641723.
M. Kamari and Y. Ham, “Vision-based volumetric measurements via deep learning-based point cloud segmentation for material management in jobsites,” Autom Constr, vol. 121, p. 103430, 2021, doi: https://doi.org/10.1016/j.autcon.2020.103430.
Z. Liang, F. Gabrieli, A. Pol, and L. Brezzi, “Automated Photogrammetric Tool for Landslide Recognition and Volume Calculation Using Time-Lapse Imagery,” Remote Sens (Basel), vol. 16, no. 17, Sep. 2024, doi: 10.3390/rs16173233.
J. Marlow, J. E. Halpin, and T. A. Wilding, “3D photogrammetry and deep-learning deliver accurate estimates of epibenthic biomass,” Methods Ecol Evol, vol. 15, no. 5, pp. 965–977, May 2024, doi: 10.1111/2041-210X.14313.
S. Th. Muhammed and F. M. Abed, “Combining Terrestrial Laser Scanning and Drone-Based Photogrammetry towards Improving Volume Calculations in Construction Projects,” Journal of Engineering, vol. 31, no. 8, pp. 26–50, Aug. 2025, doi: 10.31026/j.eng.2025.08.03.
A. R. S. Aji and D.- Djurdjani, “Perbandingan Volume Stockpile Batu Bara Hasil UAV Fotogrametri dan UAV Lidar,” JGISE: Journal of Geospatial Information Science and Engineering, vol. 5, no. 2, p. 70, Dec. 2022, doi: 10.22146/jgise.78295.
I. Putu Putrawiyanta, J. Teknik Pertambangan, and U. Palangka Raya, “Perhitungan Volume Dengan Permodelan Software Terramodel Terhadap Stockpile Batubara Volume Calculation Using Terramodel Software Modeling On Coal Stockpile,” 2024.
A. B. Santoso, “Analisis Pengukuran Volume Timbunan Stockwashmenggunakan Metode Fotogrametri Dan Terestris Pada Penambangan Bauksit,” Journal of Innovation Research and Knowledge, vol. 4, pp. 663–674, Jul. 2024.
A. Alsayed and M. R. A. Nabawy, “Stockpile Volume Estimation in Open and Confined Environments: A Review,” Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/drones7080537.
R. F. Robby, A. Sukmono, and N. Bashit, “Pengaruh Kelas Kelerengan Tanah Terhadap Persentase Selisih Perhitungan Volume Data Terrestrial Laser Scanner Dan Foto Udara Unmanned Aerial Vehicle,” vol. 9, p. 43, Apr. 2020.
M. Junaid, M. E. Al-Atroush, S. Mahmood, K. Sultan Shah, and A. Ullah, “Recent developments in unmanned aerial vehicle (UAV) surveys for rock slope stability analysis—a review,” 2025, Taylor and Francis Ltd. doi: 10.1080/10106049.2025.2519915.
P. Kujawa, J. Wajs, and K. Ple?niak, “The approach to UAV image acquisition and processing for very shallow water mapping,” International Journal of Applied Earth Observation and Geoinformation, vol. 141, Jul. 2025, doi: 10.1016/j.jag.2025.104604.
Skyline Drones, “D1.2-Drone-sensors-specification_ENG,” 2024.
Mingu Kwon, “Bundle Adjustment,” 2022, Accessed: Sep. 26, 2025. [Online]. Available: https://www.mingukwon.com/posts/bundle-adjustment
M. Koirala, P. G. Ellingsen, and A. Z. Woldaregay, “Validation of Dry Bulk Pile Volume Estimation Algorithm based on Angle of Repose using Experimental Images,” Sep. 2025, [Online]. Available: http://arxiv.org/abs/2509.13890
A. Kostrzewa, A. P?atek-?ak, P. Banat, and ?. Wilk, “Open-Source vs. Commercial Photogrammetry: Comparing Accuracy and Efficiency of OpenDroneMap and Agisoft Metashape,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, International Society for Photogrammetry and Remote Sensing, Jun. 2025, pp. 65–72. doi: 10.5194/isprs-archives-XLVIII-1-W4-2025-65-2025.
Z. Niu, H. Xia, P. Tao, and T. Ke, “Accuracy Assessment of UAV Photogrammetry System with RTK Measurements for Direct Georeferencing,” in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Copernicus Publications, May 2024, pp. 169–176. doi: 10.5194/isprs-annals-X-1-2024-169-2024.
M. Hermann et al., “Depth estimation and 3D reconstruction from UAV-borne imagery: Evaluation on the UseGeo dataset,” ISPRS Open Journal of Photogrammetry and Remote Sensing, vol. 13, Aug. 2024, doi: 10.1016/j.ophoto.2024.100065.
M. Brach, J. C. W. Chan, and P. Szyma?ski, “Accuracy assessment of different photogrammetric software for processing data from low-cost UAV platforms in forest conditions,” IForest, vol. 12, no. 5, pp. 435–441, Oct. 2019, doi: 10.3832/ifor2986-012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rahmat Fuadi Syam, Syahrul Usman

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright © by Author; Published by Institut Riset dan Publikasi Indonesia (IRPI)
This Indonesian Journal of Machine Learning and Computer Science is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

















