Pengembangan Model Deteksi Dini Kesehatan Mental Remaja Menggunakan Support Vector Machine Berbasis Analisis Teks

Early Detection Model Development of Adolescent Mental Health Using Support Vector Machine Based on Text Analysis

Authors

  • Rima Ruktiari Universitas Sembilanbelas November Kolaka
  • Hamid Wijaya Universitas Sembilanbelas November Kolaka
  • Muhammad Rizal Universitas Dipa Makassar

DOI:

https://doi.org/10.57152/malcom.v6i1.2341

Keywords:

Analisis Teks, Deteksi Dini, Kesehatan Mental Remaja, Support Vector Machine

Abstract

Kesehatan mental remaja merupakan aspek fundamental dalam pembangunan generasi muda. Peningkatan prevalensi depresi, kecemasan, dan gangguan kepribadian di kalangan remaja menimbulkan dampak serius terhadap kesejahteraan individu dan masyarakat. Evaluasi tradisional melalui wawancara atau kuesioner bersifat subjektif dan memerlukan waktu lama, sehingga sering terlambat dalam memberikan intervensi dini. Penelitian ini bertujuan mengembangkan model deteksi dini kesehatan mental remaja berbasis analisis teks menggunakan algoritma Support Vector Machine (SVM). Dataset terdiri dari ±4000 entri teks dari forum Reddit dengan lima kategori: stress, depresi, bipolar, gangguan kepribadian, dan anxiety. Setelah dilakukan resampling, setiap kelas memiliki sekitar 200 data. Teks diproses melalui cleaning, tokenisasi, penghapusan stopwords, dan stemming. Representasi fitur dilakukan dengan gabungan word-level dan char-level TF-IDF, menghasilkan 28.456 fitur. Dua model diuji, yaitu Linear SVC dan SVC dengan kernel RBF, melalui grid search. Hasil terbaik diperoleh SVC (RBF) dengan akurasi 63.3% dan macro-F1 0.635 pada data uji. Analisis menunjukkan kelas 0 (stress) paling stabil (F1=0.730), sedangkan kelas 1 (depresi) masih sulit dideteksi (F1=0.545). PR Curve memperlihatkan AP tertinggi pada kelas 0 (0.844) dan terendah pada kelas 4 (0.638). Hasil ini menunjukkan bahwa SVM mampu memberikan baseline yang menjanjikan untuk deteksi dini kesehatan mental berbasis teks, meskipun optimasi lanjutan tetap diperlukan.

Downloads

Download data is not yet available.

References

S. Kataru, K. King, and L. Fernando, “Machine Learning-Based Early Detection and Intervention for Mental Health Issues in Children,” in 2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC), 2024, pp. 2001–2007. doi: 10.1109/COMPSAC61105.2024.00320.

B. Li and Y. Xu, “Research on evaluation model of College Students’ mental health,” in 2021 International Conference on Health Big Data and Smart Sports (HBDSS), 2021, pp. 114–117. doi: 10.1109/HBDSS54392.2021.00031.

H. K. Deshmukh, S. J. Parekh, S. S. Sapkal, and P. Kamble, “MindMap: A Review on Mental Health Analysis using ML,” in 2023 6th International Conference on Advances in Science and Technology (ICAST), 2023, pp. 325–329. doi: 10.1109/ICAST59062.2023.10454965.

M. Saleem and H. Afzal, “A Review of Mental Health Analysis Through Social Media Using Machine Learning and Deep Learning Approaches,” in 2024 International Conference on Engineering & Computing Technologies (ICECT), 2024, pp. 1–7. doi: 10.1109/ICECT61618.2024.10581373.

Y. Ibrahimov, T. Anwar, and T. Yuan, “Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook,” Jun. 2024, [Online]. Available: http://arxiv.org/abs/2406.05984

K. D. Kannan, S. Kumar Jagatheesaperumal, R. N. V. P. S. Kandala, M. Lotfaliany, R. Alizadehsani, and M. Mohebbi, “Advancements in Machine Learning and Deep Learning for Early Detection and Management of Mental Health Disorder A R T I C L E I N F O.”

B. Li and Y. Xu, “Research on evaluation model of College Students’ mental health,” in 2021 International Conference on Health Big Data and Smart Sports (HBDSS), 2021, pp. 114–117. doi: 10.1109/HBDSS54392.2021.00031.

H. K. Deshmukh, S. J. Parekh, S. S. Sapkal, and P. Kamble, “MindMap: A Review on Mental Health Analysis using ML,” in 2023 6th International Conference on Advances in Science and Technology (ICAST), 2023, pp. 325–329. doi: 10.1109/ICAST59062.2023.10454965.

V. Kogilathota, “iPonder: A Novel Approach to Multimodal Mental Health Diagnosis and Therapy for Teens via Deep Transfer Learning and Computer Vision,” in 2021 IEEE International Conference on Artificial Intelligence, Robotics, and Communication (ICAIRC), 2021, pp. 20–24. doi: 10.1109/ICAIRC52191.2021.9545055.

S. Chauhan, M. Mittal, H. Singh, S. Kumar, P. Goel, and S. Gupta, “Predictive Analysis on Student’s Mental Health Towards Online Mobile Games Using Machine Learning,” in 2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN), 2023, pp. 321–324. doi: 10.1109/CICN59264.2023.10402317.

N. Pritam, K. S. Gill, M. Kumar, R. Rawat, and D. Banerjee, “Classification of Student Mental Health Analysis using Logistic Regression and other classification techniques through Machine Learning Methods,” in 2024 3rd International Conference for Innovation in Technology (INOCON), 2024, pp. 1–5. doi: 10.1109/INOCON60754.2024.10512216.

N. Sharma, I. S. Patel, N. K. Singh, and B. K. Mishra, “Predictive Modelling of Mental Health Disorders Using Machine Learning Classifiers,” in 2024 International Conference on Artificial Intelligence and Quantum Computation-Based Sensor Application (ICAIQSA), 2024, pp. 1–6. doi: 10.1109/ICAIQSA64000.2024.10882408.

P. Kaushik, E. Jain, K. S. Gill, D. Upadhyay, and S. Devliyal, “Optimizing Mental Health Prediction by Fine-Tuning Decision Classifier Parameters for Enhanced Accuracy,” in 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), 2024, pp. 935–939. doi: 10.1109/ICSCSS60660.2024.10625480.

S. Jage, S. Chaudhari, M. Jatte, A. Mhatre, and V. Mane, “Predicting Mental Health Illness using Machine Learning,” in 2023 3rd Asian Conference on Innovation in Technology (ASIANCON), 2023, pp. 1–5. doi: 10.1109/ASIANCON58793.2023.10270445.

J. Singh, M. Wazid, D. P. Singh, and S. Pundir, “An embedded LSTM based scheme for depression detection and analysis,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 166–175. doi: 10.1016/j.procs.2022.12.019.

H. K. Marrapu, B. Maram, and P. Reddi, “New Analytic Framework of Public Mental Health Prediction Using Data Science,” in 2022 International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN), 2022, pp. 1–6. doi: 10.1109/ICSTSN53084.2022.9761324.

Y. Koh, C. Lee, Y. Ku, and U. Lee, “Data Visualization for Mental Health Monitoring in Smart Home Environment: A Case Study,” in 2023 Workshop on Visual Analytics in Healthcare (VAHC), 2023, pp. 53–55. doi: 10.1109/VAHC60858.2023.00017.

P. Nagaraj, M. A. Kumar, E. S. Kumar, S. I. Lakshmi, R. Aishwarya, and M. Neyashree, “Comparative Analysis for Prediction and Classification of Mental Health Issues and Challenges Using Hybrid Learning Techniques,” in 2023 International Conference on Computer Communication and Informatics (ICCCI), 2023, pp. 1–7. doi: 10.1109/ICCCI56745.2023.10128356.

J. Cherian, B. Loftness, J. Cohen, J. Halvorson-Phelan, E. W. McGinnis, and R. S. McGinnis, “Multimodal Markers of Transdiagnostic Childhood Mental Health Impairment,” in 2024 IEEE 20th International Conference on Body Sensor Networks (BSN), 2024, pp. 1–4. doi: 10.1109/BSN63547.2024.10780528.

S. Chauhan, M. Mittal, H. Singh, S. Kumar, P. Goel, and S. Gupta, “Predictive Analysis on Student’s Mental Health Towards Online Mobile Games Using Machine Learning,” in 2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN), 2023, pp. 321–324. doi: 10.1109/CICN59264.2023.10402317.

N. Pritam, K. S. Gill, M. Kumar, R. Rawat, and D. Banerjee, “Classification of Student Mental Health Analysis using Logistic Regression and other classification techniques through Machine Learning Methods,” in 2024 3rd International Conference for Innovation in Technology (INOCON), 2024, pp. 1–5. doi: 10.1109/INOCON60754.2024.10512216.

N. Sharma, I. S. Patel, N. K. Singh, and B. K. Mishra, “Predictive Modelling of Mental Health Disorders Using Machine Learning Classifiers,” in 2024 International Conference on Artificial Intelligence and Quantum Computation-Based Sensor Application (ICAIQSA), 2024, pp. 1–6. doi: 10.1109/ICAIQSA64000.2024.10882408.

P. Kaushik, E. Jain, K. S. Gill, D. Upadhyay, and S. Devliyal, “Optimizing Mental Health Prediction by Fine-Tuning Decision Classifier Parameters for Enhanced Accuracy,” in 2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS), 2024, pp. 935–939. doi: 10.1109/ICSCSS60660.2024.10625480.

V. Kogilathota, “iPonder: A Novel Approach to Multimodal Mental Health Diagnosis and Therapy for Teens via Deep Transfer Learning and Computer Vision,” in 2021 IEEE International Conference on Artificial Intelligence, Robotics, and Communication (ICAIRC), 2021, pp. 20–24. doi: 10.1109/ICAIRC52191.2021.9545055.

M. K. I. Zim and U. Kaur, “Mental health detection and anticipation analysis using Deep Learning,” in 2023 International Conference on Computer Communication and Informatics (ICCCI), 2023, pp. 1–6. doi: 10.1109/ICCCI56745.2023.10128581.

Downloads

Published

2026-01-31

How to Cite

Ruktiari, R., Wijaya, H., & Rizal, M. (2026). Pengembangan Model Deteksi Dini Kesehatan Mental Remaja Menggunakan Support Vector Machine Berbasis Analisis Teks: Early Detection Model Development of Adolescent Mental Health Using Support Vector Machine Based on Text Analysis . MALCOM: Indonesian Journal of Machine Learning and Computer Science, 6(1), 266-273. https://doi.org/10.57152/malcom.v6i1.2341