Analisis Sentimen Terhadap Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM) Menggunakan Support Vector Machine

Sentiment Analysis of Cash Direct Assistance Distribution for Fuel Oil Using Support Vector Machine

Authors

  • Rizky Rahman Salam STMIK Amik Riau
  • Muhammad Fajri Jamil STMIK Amik Riau
  • Yusril Ibrahim STMIK Amik Riau
  • Rahmaddeni Rahmaddeni STMIK Amik Riau
  • Soni Soni Universitas Muhammadiyah Riau
  • Herianto Herianto Universitas Hang Tuah Pekanbaru

DOI:

https://doi.org/10.57152/malcom.v3i1.590

Keywords:

Beban Ekonomi, BBM, Pemerintah, Sentiment, Support Vector Machine

Abstract

Bahan bakar minyak (BBM) merupakan salah satu kebutuhan pokok masyarakat. Namun, harga BBM yang tinggi dapat menyebabkan beban ekonomi bagi masyarakat yang tidak mampu. Dalam rangka mengatasi masalah ini, pemerintah telah menerapkan program Bantuan Langsung Tunai (BLT) sebagai bentuk bantuan bagi masyarakat yang mengalami ketidakseimbangan ekonomi. Tujuan dari penelitian ini adalah untuk menganalisis sentimen masyarakat terhadap program Bantuan Langsung Tunai (BLT) Bahan Bakar Minyak (BBM). Penelitian ini menggunakan teknik pengumpulan data scraping, yaitu mengambil data dari media sosial Instagram. Jumlah yang digunakan sebanyak 356 data. Proses klasifikasi yang digunakan berdasarkan model pembelajaran dari Support Vector Machine (SVM) dan evaluasi dengan confusion matrix. Dari hasil perhitungan, terlihat bahwa proses klasifikasi sentimen menggunakan metode SVM didapatkan tingkat accuracy 85,98%, rata-rata nilai precision 82,25%, nilai rata-rata recall 66,35%, dan nilai rata-rata f-measure 73,44%. Hasil yang diperoleh menunjukkan bahwa sentimen negatif lebih banyak daripada sentimen positif, dengan masing-masing persentase 78.61% dan 21.34%. Dari analisis sentimen yang dilakukan, ditemukan bahwa sentimen negatif adalah yang paling banyak muncul, hal ini menunjukkan bahwa masyarakat tidak puas dengan bantuan langsung tunai BBM. Sebagai respon terhadap sentimen negatif yang dominan, perlu diterapkan strategi untuk melakukan pemerataan bantuan langsung tunai dan pendata’an yang terstruktur agar tingkat kekecewaan masyarakat dapat diminimalisir.

References

Przekota, G. (2022). Do High Fuel Prices Pose an Obstacle to Economic Growth? A Study for Poland. Energies 2022, 15(18), 6606; https://doi.org/10.3390/en15186606.

Akbar, Ali, Khomaini Direktorat, Jenderal Perbendaharaan, and Alamat Korespondensi. INDONESIAN TREASURY REVIEW DAMPAK PROGRAM BANTUAN TUNAI (CASH TRANSFER) TERHADAP KESEJAHTERAAN SUBJEKTIF DI INDONESIA.

Jaya Irfan, Lubis Imran, & Sihombing Marrto. (2022). Simulation of the BLT (Direct Cash Assistance) Distribution Queue With the Exponential Method. International Journal Of Health, Engineering And Technology (IJHET), 1(2), Page. 49-57.

Novalia Karina, Fenza Putra Ilham, Wulandari Megia, & Zukhri Nizwan. (2022). Analysis of the Role of the Jada Bahrin Village Government in the Direct Cash Assistance (BLT) Program During the Covid-19 Pandemic. INTERNATIONAL JOURNAL OF BUSINESS, TECHNOLOGY AND ORGANIZATIONAL BEHAVIOR (IJBTOB), 2(6), 700-708. DOI: https://doi.org/10.52218/ijbtob.v2i6.244.

Paramita Djako , Meyko Panigoro , & Sudirman (2022). Pengaruh Pemberian Bantuan Langsung Tunai (Blt) Terhadap Kesejahteraan Masyarakat Kelurahan Moodu Kecamatan Kota Timur Kota Gorontalo. JAMBURA ECONOMIC EDUCATION JOURNAL, 4(2), 196-206. https://ejurnal.ung.ac.id/index.php/jej/article/view/15957/5321.

Amran. (2022). IMPLEMENTASI KEBIJAKAN PENYALURAN DANA BANTUAN LANGSUNG TUNAI (BLT) SECARA MERATA KEPADA MASYARAKAT. Jurnal Transparansi Publik (JTP), 2 (1), 1-9. DOI: https://doi.org/10.29103/jtp.v2i1.7715

Kurniasih, Ulfa, and Akrim Teguh Suseno. 2022. “Analisis Sentimen Terhadap Bantuan Subsidi Upah (BSU) Pada Kenaikan Harga Bahan Bakar Minyak (BBM).” JURNAL MEDIA INFORMATIKA BUDIDARMA 6(4): 2335. https://ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/4958.

Bourequat, W., & Mourad, H. (2021). Sentiment analysis approach for analyzing iPhone release using support vector machine. International Journal of Advances in Data and Information Systems, 2(1), 36-44. DOI: https://doi.org/10.25008/ijadis.v2i1.1216.

Prastyo, Pulung Hendro, Amin Siddiq Sumi, Ade Widyatama Dian, and Adhistya Erna Permanasari. 2020. “Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized Poly Kernel.” Journal of Information Systems Engineering and Business Intelligence 6(2): 112.

Denny, Y. R., Permata, E., & Assaat, L. D. (2022). Classification of diseases of banana plant fusarium wilted banana leaf using support vector machine. Gravity: Jurnal IlmiahPenelitian dan Pembelajaran Fisika, 8(1). DOI: http://dx.doi.org/10.30870/gravity.v8i1.15893.

W. W. Cholil, F. P. (2022). Comparison of Machine Learning Methods in Sentiment Analysis PeduliLindungi Applications. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS) (pp. 276-280). Jakarta: IEEE.

Niu Q, Kandhro Ali Irfan, Kumar A, Shah S, Hasan M, Ahmed M H, & Liang F (2022). Web Scraping Tool For Newspapers And Images Data Using Jsonify. Journal of Applied Science and Engineering, 26(4), 465-474.

Nurkholis Andi, Alita D, & Munandar A (2022). Comparison of Kernel Support Vector MachineMulti-Classin PPKM Sentiment Analysis on Twitter. JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), 6(2), 227-233. DOI: https://doi.org/10.29207/resti.v6i2.3906.

Maharana (2022). A review: Data pre-processing and data augmentation techniques. Global Transitions Proceedings, 3(1), Pages 91-99. https://doi.org/10.1016/j.gltp.2022.04.020.

Yunanda, G., Nurjanah, D., & Meliana, S. (2022). Recommendation System from Microsoft News Data using TFIDF and Cosine Similarity Methods. Building of Informatics, Technology and Science (BITS), 4(1), 277-284. DOI: https://doi.org/10.47065/bits.v4i1.1670.

Razia Sulthana A., Pilani, Jaithunbi A. K., R. M. D., Haritha Harikrishnan, & Vijayakumar Varadarajan (2022). Sentiment Analysis on Movie Reviews Dataset Using Support Vector Machines and Ensemble Learning. International Journal of Information Technology and Web Engineering, 17(1), 1-23. DOI: 10.4018/IJITWE.311428.

Abdulkareem (2021). Realizing an Effective COVID-19 Diagnosis System Based on Machine Learning and IoT in Smart Hospital Environment. IEEE INTERNET OF THINGS JOURNAL, 8(21), 15919- 15928. DOI: 10.1109/JIOT.2021.3050775.

Majid Rahardi, Afrig Aminuddin, Ferian Fauzi Abdulloh, & Rizky Adhi Nugroho (2022). Sentiment Analysis of Covid-19 Vaccination using Support Vector Machine in Indonesia. (IJACSA) International Journal of Advanced Computer Science and Applications, 13(6), 534-539.

Kochhar, T. S., & Goyal, G. (2022). Design and Implementation of Stop Words Removal Method for Punjabi Language Using Finite Automata. In Advances in Data Computing, Communication and Security (pp. 89-98). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-16-8403-6_8.

Antonio Dwi V, Efendi S, & Mawengkang H, (2022). Sentiment analysis for covid-19 in Indonesia on Twitter with TF-IDF featured extraction and stochastic gradient descent. International Journal of Nonlinear Analysis and Applications, 13(1), 1367-1373.

Jin Chen, Ruoyi Jia, & Yaxin Yan (2022). Component Identification and Prediction of Ancient Glass Products Based on Decision Tree Model and SVM Model. Highlights in Science, Engineering and Technology, Vol 22, 142-149. DOI: https://doi.org/10.54097/hset.v22i.3304.

Desi Musfiroh, Ulfa Khaira, Pradita Eko Prasetyo Utomo, dan Tri Suratno (2021). Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 24-33. Journal Homepage: https://journal.irpi.or.id/index.php/malcom

Downloads

Published

2023-05-10